Some Results on Super Mean Graphs

نویسندگان

  • R. Vasuki
  • A. Nagarajan
چکیده

Let G be a graph and f : V (G) → {1, 2, 3, . . . , p+ q} be an injection. For each edge e = uv and an integer m ≥ 2, the induced Smarandachely edge m-labeling f∗ S is defined by f ∗ S(e) = ⌈ f(u) + f(v) m ⌉ . Then f is called a Smarandachely super m-mean labeling if f(V (G))∪ {f∗(e) : e ∈ E(G)} = {1, 2, 3, . . . , p+ q}. Particularly, in the case of m = 2, we know that f ∗(e) =    f(u)+f(v) 2 if f(u) + f(v) is even; f(u)+f(v)+1 2 if f(u) + f(v) is odd. Such a labeling is usually called a super mean labeling. A graph that admits a Smarandachely super mean m-labeling is called Smarandachely super m-mean graph. In this paper, we prove that the H-graph, corona of a H-graph, G ⊙ S2 where G is a H-graph, the cycle C2n for n ≥ 3, corona of the cycle Cn for n ≥ 3, mCn-snake for m ≥ 1, n ≥ 3 and n 6= 4, the dragon Pn(Cm) for m ≥ 3 and m 6= 4 and Cm ×Pn for m = 3, 5 are super mean graphs, i.e., Smarandachely super 2-mean graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

Mixed cycle-E-super magic decomposition of complete bipartite graphs

An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ΣνεV(H) f(v) +  ΣeεE(H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥ ...

متن کامل

Super Pair Sum Labeling of Graphs

Let $G$ be a graph with $p$ vertices and $q$ edges. The graph $G$ is said to be a super pair sum labeling if there exists a bijection $f$ from $V(G)cup E(G)$ to ${0, pm 1, pm2, dots, pm (frac{p+q-1}{2})}$ when $p+q$ is odd and from $V(G)cup E(G)$ to ${pm 1, pm 2, dots, pm (frac{p+q}{2})}$ when $p+q$ is even such that $f(uv)=f(u)+f(v).$ A graph that admits a super pair sum labeling is called a {...

متن کامل

Further results on total mean cordial labeling of graphs

A graph G = (V,E) with p vertices and q edges is said to be a total mean cordial graph if there exists a function f : V (G) → {0, 1, 2} such that f(xy) = [(f(x)+f(y))/2] where x, y ∈ V (G), xy ∈ E(G), and the total number of 0, 1 and 2 are balanced. That is |evf (i) − evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). In thi...

متن کامل

Further results on odd mean labeling of some subdivision graphs

Let G(V,E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function f : V (G) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : E(G) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. A graph that admits an odd mean labelin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013